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Analytical formulation of chemical derivatives in equilibrium plasma flows

Alessio Orsini™
AVIO Aerospace Propulsion, via I Maggio 99, 10040 Rivalta di Torino, Italy
(Received 17 September 2008; published 8 December 2008)

Chemical derivatives are used in the mathematical modeling of transport phenomena in equilibrium plasma
flows when chemical element diffusion and mixing or demixing effects are accounted for. They measure the
variation of mixture chemical composition in response to changes in element fractions, pressure, or tempera-
ture. Currently, these quantities are calculated numerically, using finite differences. This approach, other than
being computationally expensive and prone to numerical error, does not provide any insight into flow physics.
Our work is aimed at introducing a fully analytical method for the calculation of chemical derivatives which
bypasses the computational cost. It also provides a simple means of estimating their order of magnitude.
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I. INTRODUCTION

High-temperature gases and plasmas are made of several
chemical species each of them behaving with good approxi-
mation as a thermally perfect gas. Such mixtures are de-
scribed as a continuum governed by the classical Navier-
Stokes equations: conservation of mass, momentum, and
energy. In the most general case, the mixture composition is
given by a set of continuity equations, one for each species.

When chemical equilibrium occurs, the species continuity
equations can be discarded and the composition is calculated
from an algebraic system of equations [1]; local pressure,
temperature, and chemical element fractions must be known.
Element fractions (henceforth the term element will be used
to denote a chemical element) either are assumed constant or,
as we account for mixing and demixing phenomena, they are
given by a set of continuity equations for the elements [2-5].

In both nonequilibrium and equilibrium plasma flows,
transport phenomena occur [6]. Considering the transport of
mass, a set of diffusion coefficients relate the species diffu-
sion velocities with the gradients of pressure, temperature,
and species molar fractions. Ern and Giovangigli [2] pointed
out that, for a flow in chemical equilibrium, species diffusion
coefficients can be replaced by a set of new coefficients
which relate the diffusion velocities of elements with the
gradients of pressure, temperature, and element molar frac-
tions. Their derivation of the elemental diffusion coefficients
is elegant and the physical interpretation of their work is
appealing. A few years before, a simplified version of el-
emental diffusion coefficients was derived by Murphy in the
special case of two homonuclear gases [4].

Both, Murphy before and Ern and Giovangigli later, in-
troduced certain quantities which from now on will be
named as chemical derivatives. Chemical derivatives provide
a measure of the change in mixture composition with respect
to a unit change in temperature, pressure or element frac-
tions. In the two aforementioned works, the calculation of
these quantities was not explicitly addressed; it was rather
intended that they had to be calculated numerically by finite
differences. This process is computationally expensive re-
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quiring to evaluate several times the mixture composition,
moreover it is prone to numerical error.

Recently, Rini er al. [3] derived a set of coefficients
equivalent to those of Ern and Giovangili without using
chemical derivatives. Differently from the previous works,
element mass fraction gradients were used in place of molar
fraction gradients resulting in a different definition of the
elemental diffusion coefficients. The method introduced by
Rini et al. represents an advance over the previous works;
however requires inversion of several matrices, therefore the
computational cost remains high. In turn, the simplicity of
the Ern and Giovangigli approach is lost and the physical
interpretation of elemental diffusion coefficients is not as
straightforward.

The present work provides a way to calculate the chemi-
cal derivatives accurately using a fully analytical method.
Our derivation bypasses the computational cost, reducing the
numerical errors and preserving mathematical simplicity.
Moreover, by providing a simple means for estimating the
order of magnitude of chemical derivatives, we open the pos-
sibility of evaluating the relevance of the different contribu-
tions (gradients in element fractions, pressure or tempera-
ture) to diffusion in equilibrium plasma flows.

It is worth mentioning that the reduction of species diffu-
sion coefficients to element diffusion coefficients can be ap-
plied to both the symmetric formulation of species diffusion
coefficients as introduced by Curtiss [7] and used by Ferziger
and Kaper [8] and to the asymmetric formulation used by
Hirschfelder, Curtiss, and Bird [9] and by Chapman and
Cowling [10]. Chemical derivatives, as derived in this work,
can be used for both formulations.

II. GAS MIXTURE PROPERTIES

This section is dedicated to presenting some properties
which characterize a perfect gas composed of several chemi-
cal species. To simplify the exposition, we use high-temp-
erature air as a reference mixture with a representative set of
chemical species given by S={¢”,N,0,N,,0,,N*,O%}. The
total number of species is n,. All the quantities related to a
given species are labeled using the subscripts i, j, k. Each
species is obtained by combining n, elements which, for this
particular example, are £={e”,N,O}. Element properties are
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identified by the greek indices «, B, y. Chemical species
are differentiated in n, independent species, namely, 7
={e”,N, O} (coincident with the elements) which are associ-
ated to the indices p, g, and n, dependent species, D
={N,,0,,N*,0"}, associated with the indices r, s. We also
define each element of the chemical matrix ¢,; as the num-
ber of particles of element « contained in the species i, for

example, ¢NN2 =2, pon=0, P,-o+=—1.

A. Species properties

The thermodynamic state of a mixture of perfect gases in
thermal equilibrium is uniquely determined once temperature
T, pressure P, and composition are specified. The composi-
tion is assigned by giving the species molar fractions x; or
mass fractions y;:

L yi= (1)

Species molar fractions represent the ratio between the num-
ber density of a given species n; and the total number density
of the mixture n==;n;. Analogously, species mass fractions
are defined as the ratio between the density of a given spe-
cies p; and the total density of the mixture p=2,p;. By defi-
nition, both molar and mass fractions satisfy the constraints
Yx;=1 and X,y,=1. Introducing the species molar masses
M,, the molar and mass fractions relate as

YilM, x;M,
X;= s Y= —. (2)
EY/M,‘ Eijj
J j

B. Element properties

Molar and mass fractions of elements are defined in anal-
ogy with the chemical species. Element molar fractions rep-
resent the ratio between the number of particles per unit vol-
ume of a given element and the total number of element
particles per unit volume in the mixture. The same definition
applies to element mass fractions when densities are consid-
ered. Element molar, and mass fractions are related to the
corresponding species quantities by the chemical matrix:

E Duii M

=l—? ya=2 ¢ai_ayi' (3)
E bpix; i M;

Bii

Both these quantities are subjected to the usual constraints
S X.=1 and 2,y,=1 (note that =,¢,M,=M,). Relations
similar to those relative to chemical species link element
molar and mass fractions:
xa:LMa, ya:M' (4)
B B

Using Egs. (3), the differentials of the element fractions are
expressed as
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5xa=zaw~5xi, ya=2bai5yi' (5)
i i

Two new quantities named chemical coefficients are intro-
duced here:

ai xaz ¢Bi
B
> b
B

Aoi =

M,
’ baiz d)aiﬁ' (6)

Due to the constraints on molar and mass fractions, the fol-
lowing relations hold:

2 04=0, 2 8y,=0, 2 8,=0, > ,=0.(7)

III. CHEMICAL DERIVATIVES

The aim of this section is to derive an analytical expres-
sion for the chemical derivatives as used in Refs. [2,4].
When a reacting gas mixture is in local chemical equilib-
rium, its complete thermodynamic state is known at a given
position if pressure, temperature, and element molar frac-
tions (or mass fractions) are assigned at that position. All the
remaining mixture properties, including the chemical compo-
sition, are functions of these quantities [1].

A. Molar fraction derivatives

From an operative point of view, the chemical composi-
tion is calculated by specifying a number of independent
chemical reactions equal to the number of dependent species
n,. Since the choice of the reactions is arbitrary, the simplest
set one can pick up is

sz 2 ¢erp' (8)
p

Here the symbol X represents a generic species; we also used
the short notation ¢, in place of the more rigorous (¢g,) o)
The mole fractions of chemical species obey the law of mass
action:

P
Inx,= > ¢, Inx,+1In—— > (¢, — 1/n,) +In KL (Pop, 7).
P ref y

)

The equilibrium constant K” for the rth reaction is a function
of the temperature only for any arbitrary choice of the refer-
ence pressure P, By differentiating Eq. (9) with respect to
the three independent variables (x,,P,T) and applying the
van’t Hoff relation we obtain n,+2 sets of n, equations, one
for each x,:

L2300 (10)
Ecﬁ,,rx ‘;’; PE(% ). ()
P
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a X, ox Ah
e (12)
or <, or T TRT

Here R is the universal gas constant and Ah,=h,~X,¢,,h, is
the enthalpy of reaction per mole of products given as a
linear combination of molar species enthalpies.

Expanding the differentials of species molar fractions, the
first of Egs. (5) gives

5XB= 2 Clﬁiéxl‘
Xi ox;
—Eaﬁl 5x +2(151 5P+20E155T
= > (8ga—Xp) Oy, (13)

The symbol &g, is the Kronecker tensor. Because all the
differentials appearing in Eq. (13) are arbitrary quantities,
each term must vanish separately; n,+2 additional sets of n,
equations are therefore identified, one for each x,:

E aﬁz 2 aﬂpa + E aﬂr - 5[301 [37 (14)
Xo P Xa
0, 15
;aﬁl %aﬁpap +;aﬁrﬁp ( )
Eaﬁ, Eaﬁp oT Eaﬁr =0. (16)
i ¥4 r

The presence of xz in Eqs. (13) and (14) guarantees satisfac-
tion of the additional constraints

Eaﬁz —2(5ﬁa—)€3) 0. (17)

a

All these relations are valid also when the coefficients a,, are
replaced by d,;=a,+ 7, with 7, arbitrary quantities. This is
demonstrated substituting a,;=d,;— 7, in Eq. (13) and apply-
ing the first of identities (7). A convenient choice from a
numerical point of view is 7,=2g ag]|/(n.n,).

Combining Egs. (10)-(12) with Egs. (14)-(16) we obtain
n,+2 sets of linear equations for the chemical derivatives of
the independent species molar fractions:

ox
Ap —L =08, —xp, 18
% B gy, = Opa 8 (18)
EA’B)%:—lEaAB’er(d) r_l/ne), (19)
S PoP PT S '

ox 1
Ag,—L=—
E BP[})T

Ah
=D, dgXx,—. 20
: T; e (20)

»» common to the n,+2 linear systems

The matrix Ag
(18)—(20), is given by
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X
Aﬁp:dﬁp+Eaﬁ,x—r¢,,,. (21)
r P
The solution of these equations is computationally inexpen-
sive because it requires one only to invert the matrix Ag, of
dimensions n, X n,. The use of d,; instead of a,; ensures that
Ag, is nonsingular. The chemical derivatives of the depen-
dent species molar fractions are calculated by substituting
the values of dx,/dx,, dx,/ P, and dx,/dT in Egs. (10)—(12).

We observe that, while dx;/ P and dx;/ T are unique for a
given pressure, temperature, and element fractions, this is not
true for the quantities dx;/ dx,. Due to the third of identities
(7), these could be replaced in Eq. (13) by dx;/ dx,+ 7; with 7;
arbitrary quantities. Choosing 7;=0 we satisfy the additional
constraint 2;dx;/ dx,=0.

B. Mass fraction derivatives

If chemical derivatives of mass fractions are required,
they can be calculated by differentiating the second of Eqs.

(2):

Vi = E Xijaxj? (22)
J
where we defined
M.S.— M.
Xi= D% = Vi (23)
> Mix,
k

Using these relations one obtains

X O0x
E X = 2 XLk (24)
c?y / 15 Xg Yo
ay; ox;
_P = E Xija_;v (25)
J
ady; ox;
_T = 2 Xi.,';]{- (26)
J

The only unknown quantities dxg/ dy, are given by the first
of Egs. (4):

g Oap=Xp _

X)Xo/Ya- 27
v, MEy,/M =(6 B~ 5) y (27)

Chemical derivatives of mass fractions are therefore a linear
combination of chemical derivatives of mole fractions. An
equivalent derivation consists of writing Eq. (9) in terms of
species mass fractions and repeating the same steps pre-
sented above for molar fractions.

IV. DIMENSIONAL ANALYSIS

As pointed out in the Introduction, chemical derivatives
are used in the modeling of diffusion phenomena in equilib-
rium reacting flows when mixing and demixing effects are
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FIG. 1. Mixture equilibrium composition.

considered. Species diffusion is mainly driven by gradients
in chemical composition (as well as the usual pressure diffu-
sion and Soret effect). The gradients of species molar frac-
tions can be expressed as a combination of gradients of ele-
ment molar fractions, pressure, and temperature

&xi (9)6,» o'?xi
Vxl:z — Vx,+P—V InP+T—VInT. (28)
JoP JaT

ox

a a

To evaluate the relative weight of these three contributions to
diffusion, we are now interested in estimating the order of
magnitude of the coefficients multiplying the gradients in Eq.
(28). Let us start by considering the quantities appearing in
Egs. (10)—(12) and (18)—(20). By definition, the molar frac-
tions and the chemical matrix are of the order of 1:
XjyX g, Pai=0(1). Also, from Egs. (6) and (21), we have d,,
=0(1) and A,,=0(1) since these quantities are combina-
tions of other quantities of order 1.

The term Ah,/RT is also O(1). This is shown by writing
each species enthalpy as h;= h{ +C,,; T where h{ is the forma-
tion enthalpy and ¢, ; is a suitable average specific heat per
mole. For temperatures high enough [11] the term h{ IRT is
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3

0.0[

/dx

5 -02F
0.4
-0.6F
-0.8+

-1.0 D—p—=

1 L L 1 Il
0 4000 8000 12000 16000 20000
TIK]

FIG. 2. Chemical derivatives of species molar fractions with
respect to the molar fraction of element e™.
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FIG. 3. Chemical derivatives of species molar fractions with
respect to the molar fraction of element N.

small and ¢, ;/R=0(1). Because Ah, is a combination of /;
and ¢,;, our initial statement is demonstrated.

Since both the matrix A, and the right hand side of Egs.
(18)—(20) are of order one (except for the terms 1/P and
1/T), we assume that also the quantities dx,/ 0x 4, Px,/ P,
Tox,/ JT have the same order of magnitude. Analogous con-
siderations applies to the chemical derivatives of the depen-
dent species molar fractions (10)—(12) and to those relative
to the mass fractions (24)—(26). We conclude that the terms
Vx,, Vin P, and VIn T in Eq. (28) should be directly com-
pared while evaluating their contribution to diffusion since
their coefficients have the same order of magnitude.

V. AN ILLUSTRATIVE EXAMPLE

To provide a simple numerical example, the chemical de-
rivatives for the mixture considered in Sec. II are calculated.
We choose a reference pressure of 1 atm giving the full set
of chemical derivatives for species molar fractions as a func-
tion of the temperature. The molar fractions of the elements
{e7,N,O} are assumed {0.0,0.8,0.2}. In performing our calcu-
lations, the thermodynamic database provided by Burcat and

1.2 T T T T T T T T

. I . I | I
0 4000 8000 12000 16000 20000
TIK

FIG. 4. Chemical derivatives of species molar fractions with
respect to the molar fraction of element O.
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FIG. 5. Chemical derivatives of species molar fractions with
respect to pressure.

Ruscic [12] is used; results are converged with a relative
error of 10712,

In Fig. 1 the mixture equilibrium composition is given for
a temperature up to 20 000 K. Figures 2—4 show the chemi-
cal derivatives of the species molar fractions with respect to
the molar fractions of the elements. In Figs. 5 and 6 the
chemical derivatives of the species molar fractions with re-
spect to pressure and temperature are shown. The order of
magnitude estimation provided in the previous section is
confirmed by all the plots (values are all within =2.4).

Looking at the chemical composition, three transition
points can be identified. The first one, around 3500 K, cor-
responds to the temperature at which the atomic population
of oxygen exceeds the molecular population. Analogously,
the second transition point corresponds to the nitrogen dis-
sociation: around 6500 K the atomic nitrogen population be-
comes greater then the population of molecular nitrogen. Fi-
nally, the last transition point is located around 14 500 K
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FIG. 6. Chemical derivatives of species molar fractions with
respect to temperature.

when the electron population becomes dominant respect to
the neutral species. The three points identified are reflected
by the peaks and valleys of Figs. 5 and 6. This correspon-
dence highlights the strong dependence of chemical deriva-
tives on mixture composition.

VI. CONCLUSIONS

This research was aimed at identifying analytical expres-
sions for certain quantities named as chemical derivatives
which are used in the modeling of diffusion in equilibrium
plasma flows. Our analytical expressions, other than being
computationally inexpensive and free from numerical errors,
offer the possibility to gain some insights into the physics of
the problem. This is partly achieved by performing a dimen-
sional analysis, supported by numerical evidence, which al-
lowed us to predict the order of magnitude of the chemical
derivatives. The dimensional analysis gives the possibility of
estimating in advance which are the main drivers for diffu-
sion: gradients in element fractions, pressure, or temperature.
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